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Synthese und Assoziationsverhalten von
[4.4.4.4.4.4]Metacyclophandodecain-Derivaten
mit Bindungsstellen innerhalb des Makrocyclus
Yoshito Tobe,* Naoto Utsumi, Atsushi Nagano und
Koichiro Naemura

Vor wenigen Jahren berichteten Moore et al. über die
bemerkenswerten Selbstorganisationsprozesse durch p-p-Sta-
pelwechselwirkungen bei Phenylacetylen-Makrocyclen
(PAMs).[1] Höger und Mitarbeiter beschrieben die Fähigkeit
eines makrocyclischen Metaparacyclophans, ein groûes
Amin-Gastmolekül zu binden.[2] Diese auf schwachen inter-
molekularen Wechselwirkungen beruhenden Bindungseigen-

schaften können durch die Ringgröûe, die Form der Makro-
cyclen und durch Variation der inneren oder peripheren
Substituenten am Gerüst des Makrocyclus maûgeschneidert
werden. Wir beschäftigen uns mit Diethinylbenzol-Makro-
cyclen (DBMs)[3] und stellen hier die Synthese und das
ungewöhnliche Assoziationsverhalten des hexameren DBMs
1 vor, in dem Cyangruppen in das Innere des Makrocyclus
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ragen. 1 ist zu Cyansphäranden homolog, die Metallkationen
binden können.[4] Wir erwarten, daû im Innern von 1 ± im
Gegensatz zu den Cyansphäranden ± durch Ion-Dipol-Wech-
selwirkungen oder durch Wasserstoffbrückenbindungen auch
relativ groûe Moleküle gebunden werden können, da 1 einen
wohldefinierten Hohlraum von ca. 7 � Durchmesser hat, in
den die Cyangruppen zeigen. Da Substituenten an aromati-
schen Ringen die p-p-Wechselwirkungen beeinflussen kön-
nen,[5] ist es zudem interessant, den Effekt der Cyangruppen
auf die Selbstassoziation des Makrocyclus zu untersuchen. Es
stellte sich heraus, daû 1 ein ungewöhnliches und neuartiges
Assoziationsverhalten zeigt: Es bildet mit der zu 1 analogen
Verbindung 2 Heteroaggregate und mit organischen Kationen
Wirt-Gast-Komplexe der Zusammensetzung 2:1.

Die Synthese von 1 erfolgte durch intramolekularen Ring-
schluû aus der offenkettigen Vorstufe 7, die durch Hetero-
kupplung der Dimereinheiten 5 und 6 erhalten wurde
(Schema 1).[6] In ähnlicher Weise wurde das Hexamer 2 ohne
Cyangruppen hergestellt.[7]

In einer Selbstassoziation bildet 2 in CDCl3 ein Dimer mit
DG�ÿ3.4 kcal molÿ1 bei 293 K.[7] Dagegen sind im gleichen
Lösungsmittel die chemischen Verschiebungen der aromati-
schen Protonen von 1 selbst über den groûen Konzentra-
tionsbereich von 8.9� 10ÿ5 bis 9.9� 10ÿ3 mol Lÿ1 nicht von der
Konzentration abhängig, was darauf hindeutet, daû 1 nicht
selbstassoziiert. Wir führen dies auf die elektrostatische
Abstoûung zwischen den Stickstoffatomen und auf die Nicht-
planarität des makrocyclischen Gerüsts von 1[8] zurück.

dem Reiter-Modell behandelt. Die Verfeinerung gegen F 2 nach der
Volle-Matrix-kleinste-Fehlerquadrate-Methode lieferte R1� 0.092
und wR2� 0.222. Die Berechnungen wurden mit dem Programmpaket
SHELXTL 5.03 durchgeführt. Die kristallographischen Daten (ohne
Strukturfaktoren) der in dieser Veröffentlichung beschriebenen
Struktur wurden als ¹supplementary publication no. CCDC-100 961ª
beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der
Daten können kostenlos bei folgender Adresse in Groûbritannien
angefordert werden: CCDC, 12 Union Road, Cambridge CB2 1EZ
(Fax: (�44) 1223-336-033; E-mail : deposit@ccdc.cam.ac.uk).

[16] Interessanterweise führt hier die Wechselwirkung zwischen zwei
achiralen 1-H�-Ionen zu einem dissymmetrischen, chiralen Assoziat,
so daû ein Enantiomerenpaar von supramolekularen, C2-symmetri-
schen Stereoisomeren entsteht. Dies liegt daran, daû die enantiotopen
Flächen der miteinander wechselwirkenden 1-H�-Ionen die gleiche
Prochiralität aufweisen. Man kann diesen Fall aber auch von einem
anderen Standpunkt aus betrachten: Ein einziges diastereoisomeres
¹mesoª-supramolekulares Stereoisomer ± mit Ci-Symmetrie ± hätte
sich bilden müssen, wenn die beiden miteinander wechselwirkenden
Flächen einzelner 1-H�-Ionen bei der Kristallisation unterschiedliche
Prochiralität behalten hätten. Mit anderen Worten: Die Dimerisie-
rung von 1-H� erfolgt diastereoselektiv, zumindest wenn damit der
Übergang zum festen Zustand verbunden ist, wobei sich ein racemi-
sches Gemisch supramolekularer, C2-symmetrischer Stereoisomere
bildet.
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Schema 1. Synthese von 1 (R�CO2C8H17). a) Triisopropylsilylacetylen,
[Pd2(dba)3] ´ CHCl3, CuI, PPh3, NEt3, 70 8C; b) Trimethylsilylacetylen,
[Pd2(dba)3] ´ CHCl3, CuI, PPh3, NEt3, 70 8C; c) LiOH, THF/H2O, 20 8C,
5 min; d) CuCl, N,N,N',N'-Tetramethylethan-1,2-diamin (TMEDA), O2,
Aceton, 20 8C; e) Bu4NF, THF/H2O, 20 8C; f) N-Bromsuccinimid (NBS),
AgNO3, Aceton, 20 8C; g) [Pd2(dba)3] ´ CHCl3, CuI, iPr2NH, C6H6, 20 8C;
h) Cu(OAc)2, C5H5N/C6H6 (3/2, [7]� 5.0� 10ÿ4 mol Lÿ1), 20 8C. dba�
Dibenzylidenaceton, TIPS�Triisopropylsilyl, TMS�Trimethylsilyl.

Werden dagegen 1 und 2 in CDCl3 gemischt, so sind die
chemischen Verschiebungen der aromatischen Protonen von
1 in Abhängigkeit von der Konzentration beider Verbindun-
gen deutlich hochfeldverschoben (Abb. 1). Da sich die
chemische Verschiebung mit der Konzentration nicht entlang
einer der theoretisch berechneten Kurven ändert, die man für
die kompetitive Bildung von Heterodimer 1 ´ 2 und Homo-
dimer 22 erwarten würde, gehen wir davon aus, daû 1 nicht nur
zum Heterodimer 1 ´ 2 aggregiert, sondern auch höhere
Aggregate, d.h. Heterooligomere, ausbildet. Die Cyangrup-
pen in 1, die dessen Selbstassoziation verhindern, verstärken
also durch ihren elektronenziehenden Effekt die attraktiven
p-p-Stapelwechselwirkungen gegenüber 2.

Während das Hexamer 1 neutrale Moleküle in CDCl3 nicht
bindet,[9] wurden in Gegenwart ionischer Verbindungen wie
Tropyliumtetrafluoroborat (Tr�BFÿ4 ) und Guanidiniumtetra-
phenylborat (Gu�BPhÿ4 ) in CDCl3/CD3CN (8/2) eindeutige
¾nderungen der chemischen Verschiebungen im 1H-NMR-
Spektrum beobachtet (Abb. 2). Obwohl wir die Bildung von
1:1-Komplexen erwarteten,[10] zeigen die Job-Plots Maxima
für einen Molenbruch x� 0.6 bis 0.65 von 1, was auf eine
kompetitive Aggregation zu 1:1- und 2:1-Wirt-Gast-Komple-

Abb. 1. Chemische Verschiebung des Signals des aromatischen Protons
von 1 (CDCl3; 303 K). Gezeigt sind die bei Titration von 1 mit 2
beobachteten Werte (*) und die berechneten Werte (unterbrochene
Linien), die erhalten werden, wenn die Bildung eines Heterodimers 1 ´ 2
und eines Homodimers 22 mit den angegebenen Assoziationskonstanten
Khetero bzw. der Assoziationskonstante Khomo� 174 Lmolÿ1 angenommen
wird. Die fiktive chemische Verschiebung des reinen Heterodimers 1 ´ 2
wird als konstant betrachtet (dhetero� 7.0).

Abb. 2. Chemische Verschiebung des Signals des aromatischen Protons
von 1 (CDCl3/CD3CN: 8/2; 303 K) bei Titration mit Tr�BFÿ4 (*) und
Gu�BPhÿ4 (*). Die Linien wurden durch computergestützte Kurvenan-
passung erhalten. Der Einschub zeigt die Job-Plots der Titrationen von 1
mit Tr�BFÿ4 (*) und Gu�BPhÿ4 (*). Die Gesamtkonzentration von Wirt
und Gast wurde bei 2.3� 10ÿ3 mol Lÿ1 konstant gehalten.

xen hindeutet. Aus der nichtlinearen Regressionsanalyse der
Titrationskurven (Abb. 2) ermittelten wir die Assoziations-
konstanten K11 und K12 für 1:1- bzw. 2:1-Komplexe von 1 mit
Tr�BFÿ4 zu 4.0� 101 bzw. 6.3� 104 L molÿ1 und mit Gu�BPhÿ4
zu 4.0� 101 bzw. 2.5� 104 L molÿ1. Im Gegensatz dazu zeigt
das lineare Hexamer 11 gegenüber Tr�BFÿ4 keine Komplexie-
rungsneigung.

Die Triebkraft zur Bildung eines 1:1-Komplexes zwischen 1
und organischen Kationen beruht auf der elektrostatischen
Ion-Dipol-Wechselwirkung zwischen dem Kation und den
Cyangruppen, die in den Hohlraum von 1 zeigen. Für die sehr
leicht verlaufende Bildung von 2:1-Komplexen nehmen wir
an, daû elektrostatische Wechselwirkungen zwischen dem
Gastmolekül im 1:1-Komplex und den Cyangruppen von
nichtkomplexiertem 1 bedeutend sind.[11] Abbildung 3 zeigt,
daû sich die mit AM1 berechneten Oberflächen gleichen
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Abb. 3. Berechnete Oberflächen gleichen elektrostatischen Potentials von
3 (a) und 3 ´ Tr� (b). Dargestellt ist ein Schnitt durch die Spiegelebene, die
die Benzolringe teilt. Die Berechnungen wurden mit dem in SPARTAN 5.0
implementierten AM1-Parametersatz durchgeführt.

elektrostatischen Potentials eines planaren Konformers der
Modellverbindung 3 stark ändern, wenn ein kationisches
Gastmolekül (Tr�) unter Bildung eines Komplexes (3 ´ Tr�)
gebunden wird.[12] Deutlich zu erkennen ist die positive
Gesamtladung des Komplexes. Durch eine entsprechende
Ladung könnte der 1:1-Komplex 1 ´ Tr� über elektrostatische
Wechselwirkungen ein weiteres Molekül 1 binden. Darüber
hinaus können sich auch p-p-Stapelwechselwirkungen zwi-
schen den aromatischen Ringen von 1 und 1 ´ Tr� ausbilden,
da die berechnete Elektronendichte der aromatischen Ringe
in 3 ´ Tr� deutlich geringer ist als in 3. In diesem Zusammen-
hang ist wichtig, daû in der optimierten berechneten Struktur
des Komplexes 3 ´ Tr� der Wirt 3 eine planare Konformation
einnimmt, die die Ausbildung von p-p-Stapelwechselwirkun-
gen begünstigt. Wir schlieûen daraus, daû die Komplexierung
eines kationischen Gasts an 1 die Aggregation mit einem
weiteren Molekül 1 zu einem 2:1-Komplex induziert.

Der von uns synthetisierte Diethinylbenzol-Makrocyclus 1
mit in den Hohlraum weisenden Cyangruppen zeigt somit ein

neuartiges Assoziationsverhalten, indem er Heteroaggregate
mit 2 und 2:1-Wirt-Gast-Komplexe mit Tropylium- und
Guanidiniumkationen bildet.

Eingegangen am 25. November 1997,
veränderte Fassung am 19. Januar 1998 [Z 11196]

Stichwörter: Carbokationen ´ Cyclophane ´ Makrocyclen ´
Molekulare Erkennung ´ Wirt-Gast-Chemie
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